
P4 tutorial
─ introductory

Carolina Fernández

➔ Carolina Fernández

➔ R&D Engineer

➔ Working on networks, virtualisation, automation
 SDN, NFV applied to MEC, 5G, security, ...

➔ More interests: privacy et al
CarolinaFernandez

carolinafernandez.github.io

cfermart

Bio

2

1. General considerations (3m)
• History
• Approaches & aim

2. Architecture (3m)
• Architecture definition

3. Language components (19m)
• Program sections (9’)
• Tables and actions (4’)
• Stateful objects (2’)
• Recursiveness (3’)
• Checksum (1’)

Agenda

3

4. Materials and references (2m)
• Pointers

General considerations

History

Two specs
● P4_14 / P414

○ Still supported by big vendors, e.g.
Barefoot

● P4_16 / P416

○ Mostly used nowadays and supported
by open-source compilers

History
● 2013/05: Initial idea and the name “P4”
● 2014/07: First paper (SIGCOMM CCR)
● 2014/08: First P4_14 Draft Specification
● 2014/09: P4_14 Specification released

(v1.0.0)
● 2015/01: P4_14 v1.0.1
● ...
● 2016/04: P4_16 – first commits
● 2016/12: First P4_16 Draft Specification
● 2017/05: P4_16 Specification released

(v1.0.0)
● 2018/11: P4_14 v1.0.5
● 2018/11: P4_16 v1.0.1

5

Source: https://http.cat/

Comparing approaches

6Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Source: https://http.cat/

Comparing approaches

7Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Source: https://http.cat/

Comparing approaches

8Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Aim of P4

Used to:
● Define protocols in the data plane
● Use specific, custom packets
● Maximise efficiency for low-level processing
● Benefit from typical operations at the core

switches (e.g., mirroring packets)
● Benefit from some typical operations at end

nodes (e.g., move packet to CPU)

NOT used to:
● Inserting rules in the forwarding table

(programming the control plane)
● Perform some typical operations at end

nodes (e.g., traffic generation, packet
modification, monitoring)

Examples:
● Layer 4 Load Balancer – SilkRoad
● Low Latency Congestion Control – NDP
● In-band Network Telemetry – INT
● In-Network DDoS detection
● In-Network caching and coordination –

NetCache / NetChain
● Consensus at network speed – NetPaxos
● Aggregation for MapReduce Applications
● Burn-after-read transmissions

9

Architecture

Architecture (1): definition

11Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture (2): PISA

12Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Language components

P416’s language elements

14Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

P416’s program

15Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

6

Program sections (1)

16

Includes, metadata & headers/structs
● Import system or custom p4 files
● Define metadata
● Define structs
● Define headers (= struct + validity)

Control: Ingress/Egress
● Define behaviour of actions
● Define tables and link to actions
● Apply logic of tables based on

conditions

Deparser
● Emits a consolidated packet
● Headers only appended to the

packet if these are valid
● Headers are concatenated (in order

of increasing indexes)

Parser
● State machine with 1 start

(“accept”), 2 final (“accept”, “reject”)
states

● Extract the packet; move between
transitions based on the fields

Control: Checksum
● Verify checksum
● Compute checksum

Switch definition
● Sequence of sections (see numbers)

to be interpreted

2

3

4 5

7

1

Includes

● System/your own P4 files can be imported
● Import typically done, yet not restricted to, at

the beginning of the file

Headers
● Struct (C-like) + “validity” field (hidden)

○ Methods to check/set validity
○ Note: Initially, headers are invalid.

Successful extract() of a header sets its
validity bit to “true”. Must not access
fields of invalid headers

● Headers recognised and processed by program
● Order of fields in declaration order of fields ⇔ order of fields

in the wire (multiple of 8 bytes)

Program sections (2): 1/includes, headers,
etc

17

Metadata

Persists intermediate results associated to packets
or structures during their lifetime

● Standard (intrinsic)
○ Data associated to each packet.

Incorporated in P4’s libraries
○ Always valid. It defaults to “0”
○ Can be related to processing during

ingress or egress pipelines
● User-defined

○ Associated to types/structs
○ Defined by user, can follow any

format

Program sections (3): 2&7/parsers

18Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

start ETH TCP

IPv4

accept

reject

ip4=1 tcp=1

Note: parsing and deparsing are done in a left-to-right fashion (e.g., as the packet would be pictured)

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

● Must follow a Direct Acyclic Graph (DAG) processing (no loops)

● apply() performs match-action in a table
● apply() { … } uses match results to determine further processing

○ hit/miss clause
○ selected action clause

● Conditional statements
○ Comparison operations: (==, !=, >, <, >=, <=)
○ Logical operations (not, and, or)
○ Header validity checks (unknown results otherwise)

● During the the “apply” method evaluation, the “hit” field is set to
true if a match is found in the lookup-table. That can be used to
drive the execution of the control-flow in the control block that
invoked the table

Program sections (4): 4&5/control blocks

19

 apply {
 if (hdr.ipv4.isValid() &&
hdr.ipv4.ttl > 0) {
 ecmp_group.apply();
 ecmp_nhop.apply();
 }
 }

Internal evaluation
 if (ipv4_match.apply().hit) {
 // There was a hit
 } else {
 // There was a miss
 }

Program sections (5): 4&5/tables, actions

20Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

Action:
● Primitives and other actions

called inside (add logic to
processing: arithmetic ops, etc)

● Operate on headers, metadata,
constants, action data

● Linked to 1..N tables

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Program sections (5): 4&5/tables, actions

21Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Action data to be filled by control plane

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

Action:
● Primitives and other actions

called inside (add logic to
processing: arithmetic ops, etc)

● Operate on headers, metadata,
constants, action data

● Linked to 1..N tables

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Program sections (6): 4&5/stateful objects

22

● P4 objects can be classified by their lifespan
○ Stateless (transient): state is not preserved upon processing (lifespan ≤1 packet)

■ Metadata
■ Packet headers

○ Stateful (persistent): state is preserved upon processing (lifespan ≥ 1 packet)
■ Counters (associate data to entries in table; i.e., count #{packets, bytes, both})
■ Meters (measure data rate: packets/second, bytes/second)
■ Registers (sort of counters that can be operated from actions in a general way)

● Aim: persist state for longer than one packet (stateful memories)
● Allow complex, interesting processing over data
● These require resources on the target and hence are managed by a compiler

Program sections (7): 4&5/recursiveness

23

Complex parsing may require a packet to be processed recursively by being:
● duplicated (cloned) – e.g., to monitor how the packet looks like in the wire;
● sent again to pipelines (recirculated) – e.g., to reuse original packet after modifications in egress pipeline;
● sent again to pipelines (resubmitted) – e.g., to apply a table multiple times in the ingress pipeline

Note: implementation of such features depends on the architecture – e.g., in the “simple_switch”, the metadata is only
copied at the end of the current pipeline where the packet is cloned

Source: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

https://p4.org/p4-spec/docs/PSA-v1.1.0.html

● Checksum can be verified and computed
○ Depends on switch architecture (some may be missing)
○ Verified (for error correction):

■ If checksum does not match, pkt is discarded
■ If checksum matches, removed from pkt payload

○ “hdr.ipv4.hdrChecksum” is a calculated field ─ ensures the
egress packet has a correct IPv4 header checksum

● No built-in constructs in P4_16 ─ provided by specific libraries

Program sections (8): 3&6/checksum

24

update_checksum(
 hdr.ipv4.isValid(),
 {
 hdr.ipv4.version,
 hdr.ipv4.ihl,
 hdr.ipv4.diffserv,
 hdr.ipv4.totalLen,
 hdr.ipv4.identification,
 hdr.ipv4.fragOffset,
 hdr.ipv4.ttl,
 hdr.ipv4.protocol,
 hdr.ipv4.srcAddr,
 hdr.ipv4.dstAddr
 },
 hdr.ipv4.hdrChecksum,
 HashAlgorithm.csum16);

Materials

Materials: docs, sources and projects

26

Documentation
● P4 guide: https://github.com/jafingerhut/p4-guide/tree/master/docs
● P4 official tutorials: https://github.com/p4lang/tutorials
● P4 tutorial (2018): https://bit.ly/p4d2-2018-spring
● P4_16 v1.2.0 spec: https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
● P4 cheat sheet: https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

Implementation sources
● P4 compiler: https://github.com/p4lang/p4c
● P4_16 commented application

Projects
● STRATUM project (switch OS for SDN): https://stratumproject.org
● GÉANT: R&E NOS; DDoS detection, FPGA compiling, etc: https://github.com/frederic-loui/RARE ;

https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
● ONOS controller with P4 support: https://wiki.onosproject.org/display/ONOS/P4+brigade

https://github.com/jafingerhut/p4-guide/tree/master/docs
https://github.com/p4lang/tutorials
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit
https://bit.ly/p4d2-2018-spring
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf
https://github.com/p4lang/p4c
https://github.com/jafingerhut/p4-guide/blob/master/demo1/demo1-heavily-commented.p4_16.p4
https://stratumproject.org/
https://github.com/frederic-loui/RARE
https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
https://wiki.onosproject.org/display/ONOS/P4+brigade

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

