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General considerations



History

Two specs
● P4_14 / P414

○ Still supported by big vendors, e.g. 
Barefoot

● P4_16 / P416 

○ Mostly used nowadays and supported 
by open-source compilers

History
● 2013/05: Initial idea and the name “P4”
● 2014/07: First paper (SIGCOMM CCR)
● 2014/08: First P4_14 Draft Specification
● 2014/09: P4_14 Specification released 

(v1.0.0)
● 2015/01: P4_14 v1.0.1
● ...
● 2016/04: P4_16 – first commits
● 2016/12: First P4_16 Draft Specification
● 2017/05: P4_16 Specification released 

(v1.0.0)
● 2018/11: P4_14 v1.0.5
● 2018/11: P4_16 v1.0.1
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Source:  https://http.cat/

Comparing approaches

6Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring
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Source:  https://http.cat/

Comparing approaches

8Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring


Aim of P4

Used to:
● Define protocols in the data plane
● Use specific, custom packets
● Maximise efficiency for low-level processing
● Benefit from typical operations at the core 

switches (e.g., mirroring packets)
● Benefit from some typical operations at end 

nodes (e.g., move packet to CPU)

NOT used to:
● Inserting rules in the forwarding table 

(programming the control plane)
● Perform some typical operations at end 

nodes (e.g., traffic generation, packet 
modification, monitoring)

Examples:
● Layer 4 Load Balancer – SilkRoad
● Low Latency Congestion Control – NDP
● In-band Network Telemetry – INT
● In-Network DDoS detection
● In-Network caching and coordination – 

NetCache / NetChain
● Consensus at network speed – NetPaxos
● Aggregation for MapReduce Applications
● Burn-after-read transmissions
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Architecture



Architecture (1): definition

11Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf


Architecture (2): PISA

12Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring


Language components



P416’s language elements

14Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf


P416’s program

15Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring


6

Program sections (1)
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Includes, metadata & headers/structs
● Import system or custom p4 files
● Define metadata
● Define structs
● Define headers (= struct + validity)

Control: Ingress/Egress
● Define behaviour of actions
● Define tables and link to actions
● Apply logic of tables based on 

conditions

Deparser
● Emits a consolidated packet
● Headers only appended to the 

packet if these are valid
● Headers are concatenated (in order 

of increasing indexes)

Parser
● State machine with 1 start 

(“accept”), 2 final (“accept”, “reject”) 
states

● Extract the packet; move between 
transitions based on the fields

Control: Checksum
● Verify checksum
● Compute checksum

Switch definition
● Sequence of sections (see numbers) 

to be interpreted
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Includes

● System/your own P4 files can be imported
● Import typically done, yet not restricted to, at 

the beginning of the file

Headers
● Struct (C-like) + “validity” field (hidden)

○ Methods to check/set validity
○ Note: Initially, headers are invalid. 

Successful extract() of a header sets its 
validity bit  to “true”. Must not access 
fields of invalid headers

● Headers recognised and processed by program
● Order of fields in declaration  order of fields ⇔ order of fields 

in the wire (multiple of 8 bytes)

Program sections (2): 1/includes, headers, 
etc
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Metadata

Persists intermediate results associated to packets 
or structures during their lifetime

● Standard (intrinsic)
○ Data associated to each packet. 

Incorporated in P4’s libraries
○ Always valid. It defaults to “0”
○ Can be related to processing during 

ingress or egress pipelines
● User-defined

○ Associated to types/structs
○ Defined by user, can follow any 

format



Program sections (3): 2&7/parsers

18Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

start ETH TCP

IPv4

accept

reject

ip4=1 tcp=1

Note: parsing and deparsing are done in a left-to-right fashion (e.g., as the packet would be pictured)

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf


● Must follow a Direct Acyclic Graph (DAG) processing (no loops)

● apply() performs match-action in a table
● apply() { … } uses match results to determine further processing

○ hit/miss clause
○ selected action clause

● Conditional statements
○ Comparison operations: (==, !=, >, <, >=, <=)
○ Logical operations (not, and, or)
○ Header validity checks (unknown results otherwise)

● During the the “apply” method evaluation, the “hit” field is set to 
true if a match is found in the lookup-table. That can be used to 
drive the execution of the control-flow in the control block that 
invoked the table

Program sections (4): 4&5/control blocks
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  apply {
    if (hdr.ipv4.isValid() && 
hdr.ipv4.ttl > 0) {
      ecmp_group.apply();
          ecmp_nhop.apply();
      }
  }

# Internal evaluation
  if (ipv4_match.apply().hit) {
      // There was a hit
  } else {
      // There was a miss
  }



Program sections (5): 4&5/tables, actions

20Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

Action:
● Primitives and other  actions 

called inside (add logic to 
processing: arithmetic ops, etc)

● Operate on headers, metadata, 
constants, action data

● Linked to 1..N tables

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf


Program sections (5): 4&5/tables, actions

21Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Action data to be filled by control plane

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

Action:
● Primitives and other  actions 

called inside (add logic to 
processing: arithmetic ops, etc)

● Operate on headers, metadata, 
constants, action data

● Linked to 1..N tables

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf


Program sections (6): 4&5/stateful objects
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● P4 objects can be classified by their lifespan
○ Stateless (transient): state is not preserved upon processing  (lifespan ≤1 packet)

■ Metadata
■ Packet headers

○ Stateful (persistent): state is preserved upon processing (lifespan ≥ 1 packet)
■ Counters (associate data to entries in table; i.e., count #{packets, bytes, both})
■ Meters (measure data rate: packets/second, bytes/second)
■ Registers (sort of counters that can be operated from actions in a general way)

● Aim: persist state for longer than one packet (stateful memories)
● Allow complex, interesting processing over data
● These require resources on the target and hence are managed by a compiler



Program sections (7): 4&5/recursiveness
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Complex parsing may require a packet to be processed recursively by being:
● duplicated (cloned) – e.g., to monitor how the packet looks like in the wire;
● sent again to pipelines (recirculated) – e.g., to reuse original packet after modifications in egress pipeline;
● sent again to pipelines (resubmitted) – e.g., to apply a table multiple times in the ingress pipeline

Note: implementation of such features depends on the architecture – e.g., in the “simple_switch”, the metadata is only 
copied at the end of the current pipeline where the packet is cloned

Source: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

https://p4.org/p4-spec/docs/PSA-v1.1.0.html


● Checksum can be verified and computed
○ Depends on switch architecture (some may be missing)
○ Verified (for error correction):

■ If checksum does not match, pkt is discarded
■ If checksum matches, removed from pkt payload

○ “hdr.ipv4.hdrChecksum” is a calculated field ─ ensures the 
egress packet has a correct IPv4 header checksum

● No built-in constructs in P4_16 ─ provided by specific libraries

Program sections (8): 3&6/checksum
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update_checksum(
  hdr.ipv4.isValid(),
  {
    hdr.ipv4.version,
    hdr.ipv4.ihl,
    hdr.ipv4.diffserv,
    hdr.ipv4.totalLen,
    hdr.ipv4.identification,
    hdr.ipv4.fragOffset,
    hdr.ipv4.ttl,
    hdr.ipv4.protocol,
    hdr.ipv4.srcAddr,
    hdr.ipv4.dstAddr
  },
  hdr.ipv4.hdrChecksum,
  HashAlgorithm.csum16);



Materials



Materials: docs, sources and projects
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Documentation
● P4 guide: https://github.com/jafingerhut/p4-guide/tree/master/docs
● P4 official tutorials: https://github.com/p4lang/tutorials
● P4 tutorial (2018): https://bit.ly/p4d2-2018-spring
● P4_16 v1.2.0 spec: https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
● P4 cheat sheet: https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

Implementation sources
● P4 compiler: https://github.com/p4lang/p4c
● P4_16 commented application

Projects
● STRATUM project (switch OS for SDN): https://stratumproject.org
● GÉANT: R&E NOS; DDoS detection, FPGA compiling, etc: https://github.com/frederic-loui/RARE ;  

https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
● ONOS controller with P4 support: https://wiki.onosproject.org/display/ONOS/P4+brigade

https://github.com/jafingerhut/p4-guide/tree/master/docs
https://github.com/p4lang/tutorials
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit
https://bit.ly/p4d2-2018-spring
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf
https://github.com/p4lang/p4c
https://github.com/jafingerhut/p4-guide/blob/master/demo1/demo1-heavily-commented.p4_16.p4
https://stratumproject.org/
https://github.com/frederic-loui/RARE
https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
https://wiki.onosproject.org/display/ONOS/P4+brigade
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