
P4 tutorial
─ intermediate

Carolina Fernández

➔ Carolina Fernández

➔ R&D Engineer

➔ Working on networks, virtualisation, automation
 SDN, NFV applied to MEC, 5G, security, ...

➔ More interests: privacy et al
CarolinaFernandez

carolinafernandez.github.io

cfermart

Bio

2

1. General considerations (3m)
• History
• Approaches & aim

2. Architecture (5m)
• Architecture and portability

3. Language components (23m)
• Program sections (9’)
• Tables, actions and primitives (6’)
• Stateful objects (2’)
• Recursiveness (5’)
• Checksum (1’)

Agenda

3

4. Lab session (50m)
• Compiling and running a P4 app (5’)
• Labs

• Basic forwarding (15’)
• Basic (encapsulated) forwarding

(10’)
• Load balancing (10’)
• Cloning (10’)

5. Materials and references (4m)
• Pointers
• Tools

General considerations

History

Two specs
● P4_14 / P414

○ Still supported by big vendors, e.g.
Barefoot

● P4_16 / P416

○ Mostly used nowadays and supported
by open-source compilers

History
● 2013/05: Initial idea and the name “P4”
● 2014/07: First paper (SIGCOMM CCR)
● 2014/08: First P4_14 Draft Specification
● 2014/09: P4_14 Specification released

(v1.0.0)
● 2015/01: P4_14 v1.0.1
● ...
● 2016/04: P4_16 – first commits
● 2016/12: First P4_16 Draft Specification
● 2017/05: P4_16 Specification released

(v1.0.0)
● 2018/11: P4_14 v1.0.5
● 2018/11: P4_16 v1.0.1

5

Source: https://http.cat/

Comparing approaches

6Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Source: https://http.cat/

Comparing approaches

7Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Source: https://http.cat/

Comparing approaches

8Source: https://bit.ly/p4d2-2018-spring

https://http.cat/
https://bit.ly/p4d2-2018-spring

Aim of P4

Used to:
● Define protocols in the data plane
● Use specific, custom packets
● Maximise efficiency for low-level processing
● Benefit from typical operations at the core

switches (e.g., mirroring packets)
● Benefit from some typical operations at end

nodes (e.g., move packet to CPU)

NOT used to:
● Inserting rules in the forwarding table

(programming the control plane)
● Perform some typical operations at end

nodes (e.g., traffic generation, packet
modification, monitoring)

Examples:
● Layer 4 Load Balancer – SilkRoad
● Low Latency Congestion Control – NDP
● In-band Network Telemetry – INT
● In-Network DDoS detection
● In-Network caching and coordination –

NetCache / NetChain
● Consensus at network speed – NetPaxos
● Aggregation for MapReduce Applications
● Burn-after-read transmissions

9

Architecture

Architecture (1): definition

11Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture (2): PISA

12Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Architecture (3): portability

13Source: https://bit.ly/p4d2-2018-spring, https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Term Explanation

Target Definition of specific HW implementation

Architecture Set of programmable components, externs, fixed
components and their interfaces available

Platform Architecture implemented on a given Target

https://bit.ly/p4d2-2018-spring
https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Language components

P416’s language elements

15Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

P416’s program (1)

16Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

P416’s program (2)

17Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Program sections (1)

18

Includes, metadata & headers/structs
● Import system or custom p4 files
● Define metadata
● Define structs
● Define headers (= struct + validity)

Control: Ingress/Egress
● Define behaviour of actions
● Define tables and link to actions
● Apply logic of tables based on

conditions

Deparser
● Emits a consolidated packet
● Headers only appended to the

packet if these are valid
● Headers are concatenated (in order

of increasing indexes)

Parser
● State machine with 1 start

(“accept”), 2 final (“accept”, “reject”)
states

● Extract the packet; move between
transitions based on the fields

Control: Checksum
● Verify checksum
● Compute checksum

Switch definition
● Sequence of sections (see numbers)

to be interpreted

2

3

4 5

6

7

1

● System P4 files or your own P4 programs can be imported
● The import is typically done at the beginning of the file; but can also be imported in other locations

○ For instance; when assigned to a variable

Program sections (2): 1/includes

19

// core library needed for packet_in and packet_out definitions
include <core.p4>
// Include very simple switch architecture declarations
include "very_simple_switch_model.p4"

Program sections (3): 1/metadata

20

Metadata is used to persist intermediate results associated to packets or structures during their lifetime
○ Types: standard (intrinsic) ; user-defined

Standard (intrinsic)
Data associated to each packet. Incorporated in P4’s libraries

This data is always valid. It defaults to “0”

Can be related to processing during ingress or egress
pipelines

User-defined
Metadata associated to types/structs.

Defined by user, can follow any format

action send_to_port(port) {
 standard_meta.egress_port = port;
}
action keep_result(bit<32> res) {
 user_meta.output = res;
}

Program sections (4): 1/metadata

21

Struct standard_metadata_t contains the following
fields that can be used to store intermediate data:

Recursive processing:
● bit<32> instance_type
● bit<32> clone_spec
● bit<16> recirculate_port
● bit<1> resubmit_flag

Queue management:
● bit<32> enq_timestamp
● bit<19> enq_qdepth
● bit<32> deq_timedelta
● bit<19> deq_qdepth

Ingress/egress movement:
● bit<9> ingress_port
● bit<9> egress_spec
● bit<9> egress_port
● bit<16> egress_rid
● bit<16> mcast_grp

Checksum:
● bit<1> checksum_error

Others:
● bit<48> ingress_global_timestamp
● bit<32> lf_field_list
● bit<32> packet_length
● bit<1> drop

Program sections (4): 1/metadata

22Source: https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md, https://bit.ly/p4d2-2018-spring

https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://bit.ly/p4d2-2018-spring

● Header: struct (C-like) + “validity” field (hidden)
○ Methods: isValid(), setValid(), setInvalid()
○ Note: successful extract() of a header sets its validity bit to “true”

● Network protocol headers to be recognised and processed by the program
● Ordering

○ Order of fields in the declaration order of fields in the wire⇔ order of fields in the wire
○ Packet has no gaps between fields
○ Packet header length must be multiple of 8 bytes

● Initially, all headers are invalid
○ Note: accessing header fields of invalid headers leads to undefined

behaviours

Program sections (5): 1/headers

23

header H {
 bit<32> x;
 bit<32> y;
}

Struct InControl {
 PortId input_port;
}

Program sections (5): 1/headers

24Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Program sections (6): 2&7/parsers

25Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

start ETH TCP

IPv4

accept

reject

ip4=1 tcp=1

Note: parsing and deparsing are done in a left-to-right fashion (e.g., as the packet would be pictured)

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Program sections (7): 2&7/parsers

26Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

● Must follow a Direct Acyclic Graph (DAG) processing (no loops)

● apply() performs match-action in a table
● apply() { … } uses match results to determine further processing

○ hit/miss clause
○ selected action clause

● Conditional statements
○ Comparison operations: (==, !=, >, <, >=, <=)
○ Logical operations (not, and, or)
○ Header validity checks (unknown results otherwise)

● During the the “apply” method evaluation, the “hit” field is set to
true if a match is found in the lookup-table. That can be used to
drive the execution of the control-flow in the control block that
invoked the table

Program sections (8): 4&5/control blocks

27

 apply {
 if (hdr.ipv4.isValid() &&
hdr.ipv4.ttl > 0) {
 ecmp_group.apply();
 ecmp_nhop.apply();
 }
 }

Internal evaluation
 if (ipv4_match.apply().hit) {
 // There was a hit
 } else {
 // There was a miss
 }

Program sections (9): 4&5/tables

28Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Program sections (9): 4&5/tables

29Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Action data to be filled by control plane

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

30

Action:
● May contain data values (written

by control plane, read by data
plane) -- the control-plane can
influence dynamically the behavior
of the data plane

● Primitives and other actions
called inside

● Operate on headers, metadata,
constants, action data

● Linked to 1..N tables
● Sequential execution
● By default: NoAction

 Directionless:
 {
 "table": "MyIngress.ipv4_lpm",
 "match": {
 "hdr.ipv4.dstAddr": ["10.0.2.2", 32]
 },
 "action_name": "MyIngress.ipv4_forward",
 "action_params": {
 "dstAddr": "00:00:00:02:02:00",
 "port": 2
 }
 },

Source: https://bit.ly/p4d2-2018-spring

Program sections (9): 4&5/actions

https://bit.ly/p4d2-2018-spring

Note: used inside actions, may affect metadata

Types:

● Basic: no operation, drop, emit,…
● Moving data: modify fields, shift, …
● Calculations: boolean, bitwise, hash-

based, random number generators,
min, max, …

● Headers: add, copy, remove, ...

Program sections (10): 4&5/primitives

● Stateful objects: count, execute
meter, read/write register, …

● Recursive processing: clone packet {in
ingress to reappear at egress, in
egress to reappear at egress},
resubmit (re-send after crossing
ingress pipeline), recirculate (re-send
after crossing both pipelines)

● Interaction: copy packet to CPU, …
● ...

31

Program sections (11): 4&5/stateful objects

32

● P4 objects can be classified by their lifespan
○ Stateless (transient): state is not preserved upon processing (lifespan ≤1 packet)

■ Metadata
■ Packet headers

○ Stateful (persistent): state is preserved upon processing (lifespan ≥ 1 packet)
■ Counters (associate data to entries in table; i.e., count #{packets, bytes, both})
■ Meters (colour & measure data rate: packets/second, bytes/second)
■ Registers (sort of counters that can be operated from actions in a general way)

● Aim: persist state for longer than one packet (stateful memories)
● Allow complex, interesting processing over data
● These require resources on the target and hence are managed by a compiler

Program sections (12): 4&5/recursiveness

33

Complex parsing may require a packet to be processed recursively by being:

● duplicated (cloned) – e.g., to monitor how the packet looks like in the wire;
● sent again to pipelines (recirculated) – e.g., for reusing the original packet upon modifications in the egress

pipeline;
● sent again to pipelines (resubmitted) – e.g., for further processing in the ingress pipeline (for instance, to

apply a table multiple times)

Note: implementation of such features depends on the architecture – e.g., in the “simple_switch”, the metadata is only
copied at the end of the current pipeline where the packet is cloned

Program sections (12): 4&5/recursiveness

34Source: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

#define PKT_INSTANCE_TYPE_NORMAL 0
#define PKT_INSTANCE_TYPE_INGRESS_CLONE 1
#define PKT_INSTANCE_TYPE_EGRESS_CLONE 2
#define PKT_INSTANCE_TYPE_COALESCED 3
#define PKT_INSTANCE_TYPE_INGRESS_RECIRC 4
#define PKT_INSTANCE_TYPE_REPLICATION 5
#define PKT_INSTANCE_TYPE_RESUBMIT 6

https://p4.org/p4-spec/docs/PSA-v1.1.0.html

Program sections (13): 4&5/recursiveness

35

● Cloning: copy a packet. The cloned packet appears at the egress pipeline in both cases.
Types:

■ Packet cloned in the ingress pipeline – Ingress to egress: CloneType.I2E
■ Packet cloned in the egress pipeline – Egress to egress: CloneType.E2E

○ Use case: monitor how the packet looks in the wire
○ Note: mirror session_id used to tag and to identify the cloned packets

● Resubmit: send the packet to the pipelines after crossing the ingress pipeline
○ Use case: perform packet processing that cannot be completed in a single pass

● Recirculate: send the packet to the pipelines after crossing the ingress & egress pipelines
○ Use case: for reusing the original packet upon modifications in the egress pipeline

● Checksum can be verified and computed
○ Depends on switch architecture (some may be missing)
○ Verified (for error correction):

■ If checksum does not match, pkt is discarded
■ If checksum matches, removed from pkt payload

● No built-in constructs in P4_16 ─ expressed as externs (provided by
specific libraries)

○ E.g., the “Checksum16” extern, available from the VSS
architecture

● “hdr.ipv4.hdrChecksum” is a calculated field ─ ensures the egress
packet has a correct IPv4 header checksum

○ Creates a list of fields that participate in checksum calculation,
and the calculation parameters

Program sections (14): 3&6/checksum

36

update_checksum(
 hdr.ipv4.isValid(),
 {
 hdr.ipv4.version,
 hdr.ipv4.ihl,
 hdr.ipv4.diffserv,
 hdr.ipv4.totalLen,

hdr.ipv4.identification,
 hdr.ipv4.fragOffset,
 hdr.ipv4.ttl,
 hdr.ipv4.protocol,
 hdr.ipv4.srcAddr,
 hdr.ipv4.dstAddr
 },
 hdr.ipv4.hdrChecksum,
 HashAlgorithm.csum16);

Lab session

Compiling and running a P4 app (1)

38

 make run
 make stop; make
clean

Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Compiling and running a P4 app (2)

39

1 2

3

Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Compiling and running a P4 app (3)

40Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Compiling and running a P4 app (4)

41

P4Runtime provides Target & Protocol independent API to
control the dataplane (fills it with commands and flows)

sX-commands.txt (send flows as commands)

table_set_default switchp_nhop drop
table_set_default switchp_tag add_switchp_tag 1
table_add switchp_nhop set_nhop 10.1.1.2/32 => 2 0
table_add switchp_nhop set_nhop 10.1.1.1/32 => 1 1

sX-runtime.json (send flows as structures)

 {
 "table": "MyIngress.switchp_nhop",
 "default_action": true,
 "action_name": "MyIngress.drop",
 "action_params": { }
 },
 {
 "table": "MyIngress.switchp_tag",
 "default_action": true,
 "action_name": "MyIngress.add_switchp_tag",
 "action_params": { }
 },
 {
 "table": "MyIngress.switchp_nhop",
 "match": {
 "hdr.ipv4.dstAddr": ["10.1.1.2", 32]
 },
 "action_name": "MyIngress.set_nhop",
 "action_params": {
 "port": 2,
 "remove_tags": 0
 }
 },
 {
 "table": "MyIngress.switchp_nhop",
 "match": {
 "hdr.ipv4.dstAddr": ["10.1.1.1", 32]
 },
 "action_name": "MyIngress.set_nhop",
 "action_params": {
 "port": 1,
 "remove_tags": 1
 }
 }

sX-runtime.json (send flows as structures)

{
 "target": "bmv2",
 "p4info": "build/clone.p4.p4info.txt",
 "bmv2_json": "build/clone.json",
 "table_entries": [
 …
]
}

table name action
name

match action arguments

Source: https://github.com/PathDump/SwitchPointer/blob/master/implementation/p4/apps/ping/s2-commands.txt

https://s3-us-west-2.amazonaws.com/p4runtime/docs/v1.0.0/P4Runtime-Spec.html
https://github.com/PathDump/SwitchPointer/blob/master/implementation/p4/apps/ping/s2-commands.txt

Frequent questions

42Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Labs: common topology

43

1 2

3

1
2

3

1

2 3

00:00:00:00:01:01

00:00:00:00:03:03

00:00:00:00:02:02

00:00:00:00:01:03

00:00:00:00:01:0200:00:00:00:01:01

Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Lab1: basic forwarding (1)

44Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Lab1: basic forwarding (2)

45

1. Access the example in your VM:
• cd p4-tutorials/exercises/basic

2. Define how packets are parsed
• Ethernet frame arrives

• Packet is parsed (from outer to inner headers / left to right order)
• etherType field is matched (possible values: 0x0800 for IPv4, 0x8847 for MPLS unicast, ...)
• Based on the result above:

• If IPv4, parse it as an IPv4 datagram
• Otherwise, continue to the “accept” transition

3. Define control sequences (N/A for this example)

Source: http://www.helldragon.eu/marcello/galli_lezioni/D_internet/tcpip.html

https://en.wikipedia.org/wiki/EtherType#Examples
http://www.helldragon.eu/marcello/galli_lezioni/D_internet/tcpip.html

Lab1: basic forwarding (3)

46

4. Define checksum verification process
• Not used

5. Define I/O sequences
• Ingress:

• Define tables: which information from the packet should be matched
• LPM match on the “dstAddr” field, define forwarding action

• Define actions: what to do based on specific data
• Output to port; update src, dst fields; decrement TTL

• Apply tables based on conditions (e.g., validity of header whose fields are matches on
the table)

• Egress: not used
6. Define checksum computation

• Not used
7. Define how packets are deparsed

• Reconstruct packet from headers: from outer to inner headers / left to right order (Ethernet;
IPv4)

Lab2: basic forwarding & encapsulation (1)

47

Based on the previous basic forwarding (keep support for IPv4 routing):⇒ keep support for IPv4 routing):
● Add support for a basic tunneling protocol
● Such tunneling protocol will forward to the destination port based on the new tunnel header
● The new header type will contain a protocol ID (type of packet) and the destination ID in use for routing

ETH hdr Tunnel hdr IPv4 hdr IPv4 pld

proto_id dst_id

0 …….. 15 16 …..... 31

Lab2: basic forwarding & encapsulation (2)

48

1. Access the example in your VM:
• cd p4-tutorials/exercises/basic_tunnel

2. Define how packets are parsed
• Ethernet frame arrives

• Packet is parsed (from outer to inner headers / left to right order)
• etherType field is matched (possible values: 0x0800 for IPv4, 0x1212 for myTunnel, ...)
• Based on the result above:

• If IPv4, parse it as an IPv4 datagram
• If myTunnel, parse its headers. Within this transition, parse IPv4 if it is inside
• Otherwise, continue to the “accept” transition

Source: http://www.helldragon.eu/marcello/galli_lezioni/D_internet/tcpip.html

12
12

https://en.wikipedia.org/wiki/EtherType#Examples
http://www.helldragon.eu/marcello/galli_lezioni/D_internet/tcpip.html

3. Define control sequences (N/A for this example)
4. Define checksum verification process

• Not used
5. Define I/O sequences

• Ingress:
• Define tables: which information from the packet should be matched

• Exact match on the “dst_id” field, define forwarding action
• Define actions: what to do based on specific data

• Output to port (based on the “dst_id” field)
• Apply tables based on conditions (e.g., validity of header whose fields are matches on

the table)
• Check first for encapsulating header -- otherwise process inside packet

• Egress: not used
6. Define checksum computation

• Not used
7. Define how packets are deparsed

• Reconstruct packet from headers: from outer to inner headers / left to right order (Ethernet;
myTunnel; IPv4)

Lab2: basic forwarding & encapsulation (3)

49

Considerations:
● The parser must take into account that the “myTunnel” header may not be present
● The EtherType value for the “myTunnel” protocol is “0x1212”
● The parser and deparser blocks process the fields in a left-to-right fashion; as you would depict the

packet
● The “myTunnel” forward will simply output the packet on the same port as stated by the node id (check

topology)
Test:

● From h1, run the following and check for output in h2:

○ ./send.py 10.0.2.2 "P4 is cool" --dst_id 2

○ ./send.py 10.0.3.3 "P4 is cool" --dst_id 2

Extra:
● Change order (priority!) of the “apply” to different tables (under MyIngress) to be 1) ipv4, 2) myTunnel:

○ Then, from h1 run the following and check for output in h2:

■ ./send.py 10.0.2.2 "P4 is cool" --dst_id 2

■ ./send.py 10.0.2.2 "P4 is cool" --dst_id 3

● Craft your own Scapy packets (you may check the sample of send.py)

Lab2: basic forwarding & encapsulation (4)

50

Lab2: basic forwarding & encapsulation (5)

51

State machine for the parser process:

start ETH
MyTun

IPv4

accept

reject

ip4=1
myT=1

ip4=1
myT=0

ip4=1

ip4=0
myT=0

Lab3: load balancing (1)

52

Implementation of load balancing to random host, based on a simple version of Equal-Cost Multipath
Forwarding:
● “ecmp_group” uses a hash function (applied to a 5-tuple) to select one of two hosts
● “ecmp_nhop” defines (based on the hash) to which host the packet will be forwarded
● “send_frame” forwards the packet and rewrite the MAC address

Note: 5-tuple: (Source IP, Destination IP, Protocol, L4 Source Port, L4 Destination Port)

Tables filled via P4Runtime (“PI”), BFRuntime, etc

table: ecmp_group (s1)

Match fields Action Action data

hdr.ipv4.dstAddr {drop, set_ecmp_select} bit<16> ecmp_base,
bit<32>
ecmp_count

10.0.0.1/32 set_ecmp_select ecmp_base=0,
ecmp_count=2

table: ecmp_nhop (s1)

Match fields Action Action data

meta.ecmp_select {drop, set_nhopt} bit<48> nhop_dmac,
bit<32> nhop_ipv4,
bit<9> port

0 set_nhop ndop_dmac=00:00:00:00:00:00:01:02,
nhop_ipv4=10.0.2.2,
port=2

1 set_nhp ndop_dmac=00:00:00:00:00:00:01:03,
nhop_ipv4=10.0.3.3,
port=3

Lab3: load balancing (2)

53

table: send_frame (s1)

Match fields Action Action data

egress_port {drop,
rewrite_mac}

bit<48> smac

2 rewrite_mac smac=00:00:00:01:02:00

3 rewrite_mac smac=00:00:00:01:03:00

Ingress pipeline
● Generate hash for packet (based on 5-

tuple)
● Table that matches on hash and

forwards the packet (changes
ethernet.dstAddr, ipv4.dstAddr,
egress_port)

Egress pipeline
● Define table that matches on egress_port

and rewrites ethernet.srcAddr to that of
the nearby switch

Lab3: load balancing (3)

54

Considerations:
● The load balancing is performed based on the field “meta.ecmp_select”

○ If ecmp_select == 0 → packet is forwarded to h2
○ If ecmp_select == 1 → packet is forwarded to h3

Test:
● From h1, run the following and check for output in h3:

○ ./send.py 10.0.0.1 "P4 is cool"

Extra:
● Change the entry in “ecmp_nhop” in s1-runtime.json where “meta.ecmp_select : 1” to the following.

Packet should arrive to h2 instead:
{
 "table": "MyIngress.ecmp_nhop",
 "match": { "meta.ecmp_select": 1 },
 "action_name": "MyIngress.set_nhop",
 "action_params": { "nhop_dmac": "00:00:00:00:01:02", "nhop_ipv4": "10.0.2.2",
"port" : 2 }
},

Lab4: packet cloning (1)

55

ORIGINAL
CLONE
D

1

2
3

4
5

6

7

Source: https://httpstatusdogs.com/

s1-eth1
s1-eth2

s2-eth2
s2-eth1

Lab4: packet cloning (2)

56

Traffic outputted by h1 and shared with s1 (switch 1, port 1)
p4@p4-vm:~/tutorials/exercises/clone$ clear; sudo tcpdump "tcp[tcpflags] & (tcp-syn) != 0" -i s1-eth1 -vv
01:23:37.805322 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 50)
 10.0.1.1.60784 > 10.0.2.2.1234: Flags [S], cksum 0xcff9 (correct), seq 0:10, win 8192, length 10
01:23:37.807092 IP (tos 0x0, id 1, offset 0, flags [none], proto TCP (6), length 50)
 10.0.3.3.60784 > 10.0.2.2.1234: Flags [S], cksum 0xcff9 (incorrect -> 0xcdf7), seq 0:10, win 8192, length 10

Traffic outputted by s1 and shared with s2 (switch 1, port 2)
p4@p4-vm:~/tutorials/exercises/clone$ clear; sudo tcpdump "tcp[tcpflags] & (tcp-syn) != 0" -i s1-eth2 -vv
01:23:37.807138 IP (tos 0x0, ttl 63, id 1, offset 0, flags [none], proto TCP (6), length 50)
 10.0.1.1.60784 > 10.0.2.2.1234: Flags [S], cksum 0xcff9 (correct), seq 0:10, win 8192, length 10

Traffic outputted by s2 and shared with h2 (switch 2, port 1)
p4@p4-vm:~/tutorials/exercises/clone$ clear; sudo tcpdump "tcp[tcpflags] & (tcp-syn) != 0" -i s2-eth1 -vvv
01:23:37.808094 IP (tos 0x0, id 1, offset 0, flags [none], proto TCP (6), length 50)
 10.0.3.3.60784 > 10.0.2.2.1234: Flags [S], cksum 0xcff9 (incorrect -> 0xcdf7), seq 0:10, win 8192, length 10
01:23:37.808141 IP (tos 0x0, ttl 62, id 1, offset 0, flags [none], proto TCP (6), length 50)
 10.0.1.1.60784 > 10.0.2.2.1234: Flags [S], cksum 0xcff9 (correct), seq 0:10, win 8192, length 10

Original packet: TTL=64

Cloned packet: TTL=0,
IPv4src=fake

Original packet: TTL=62

Cloned packet: TTL=0,
IPv4src=fake

Original packet: TTL=63

Ignore RESET packets

Materials

Materials (1): docs, sources and projects

58

Documentation
● P4 guide: https://github.com/jafingerhut/p4-guide/tree/master/docs
● P4 official tutorials: https://github.com/p4lang/tutorials
● P4 tutorial (2018): https://bit.ly/p4d2-2018-spring
● P4_16 v1.2.0 spec: https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
● P4 cheat sheet: https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

Implementation sources
● P4 compiler: https://github.com/p4lang/p4c
● P4_16 commented application

Projects
● STRATUM project (switch OS for SDN): https://stratumproject.org
● GÉANT: R&E NOS; DDoS detection, FPGA compiling, etc: https://github.com/frederic-loui/RARE ;

https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
● ONOS controller with P4 support: https://wiki.onosproject.org/display/ONOS/P4+brigade

https://github.com/jafingerhut/p4-guide/tree/master/docs
https://github.com/p4lang/tutorials
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit
https://bit.ly/p4d2-2018-spring
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf
https://github.com/p4lang/p4c
https://github.com/jafingerhut/p4-guide/blob/master/demo1/demo1-heavily-commented.p4_16.p4
https://stratumproject.org/
https://github.com/frederic-loui/RARE
https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
https://wiki.onosproject.org/display/ONOS/P4+brigade

● p4c-bm2-ss: compiles a P4 program (must be used with other steps to load the output in the switch/model)
○ Can compile on P4_14 and P4_16, based on target device, architecture, ...
○ --p4-runtime allows writing the control plane API description (i.e., rules to be installed on the devices)
○ Sample:

p4c-bm2-ss --p4v 16 --p4runtime-files basic_tunnel.p4.p4info.txt basic_tunnel.p4
● simple_switch_grpc: P4 software switch (codenamed “behavioural model v2 / bmv2”)
● PI: P4 Runtime -- API run-time update (w/o restarting control plane), extending schema to describe new features
● ptf: Packet Test Framework. Define Python unit tests to verify the behaviour of the dataplane
● scapy: generate packets for testing

○ Sample:
from scapy.all import sendp, get_if_hwaddr, send, Ether, IP, TCP
import random
pkt = Ether(src=get_if_hwaddr("ens3"), dst="ff:ff:ff:ff:ff:ff")
pkt = pkt / IP(dst="10.102.10.56") / TCP(dport=1234,
sport=random.randint(49152,65535)) / "Payload data"
pkt.show2()
sendp(pkt, iface="ens3", verbose=False)

Materials (2): open-source tools

59

	Slide 1
	Slide 2
	Agenda
	General considerations
	History
	Slide 6
	Slide 7
	Comparing approaches_clipboard0
	Aim of P4
	Architecture
	Architecture (1): definition
	Architecture (2): PISA
	Architecture (3): portability
	Language components
	P416’s language elements
	P416’s program (1)
	P416’s program (2)
	Program sections (1)
	Program sections (2): 1/includes
	Program sections (3): 1/metadata
	Program sections (4): 1/metadata
	Program sections (4): 1/metadata
	Program sections (5): 1/headers
	Program sections (5): 1/headers
	Program sections (6): 2&7/parsers
	Program sections (7): 2&7/parsers
	Program sections (8): 4&5/control blocks
	Program sections (9): 4&5/tables
	Slide 29
	Program sections (9): 4&5/actions
	Program sections (10): 4&5/primitives
	Program sections (11): 4&5/stateful objects
	Program sections (12): 4&5/recursiveness
	Program sections (12): 4&5/recursiveness
	Program sections (13): 4&5/recursiveness
	Program sections (14): 3&6/checksum
	Lab session
	Compiling and running a P4 app (1)
	Compiling and running a P4 app (2)
	Compiling and running a P4 app (3)
	Compiling and running a P4 app (4)
	Frequent questions
	Labs: common topology
	Lab1: basic forwarding (1)
	Lab1: basic forwarding (2)
	Lab1: basic forwarding (3)
	Lab2: basic forwarding with encapsulation (1)
	Lab2: basic forwarding with encapsulation (2)
	Lab2: basic forwarding with encapsulation (3)
	Lab2: basic forwarding with encapsulation (4)
	Lab2: basic forwarding with encapsulation (5)
	Lab3: load balancing (1)
	Lab3: load balancing (2)
	Lab3: load balancing (3)
	Lab4: packet cloning (1)
	Lab4: packet cloning (2)
	Materials
	Materials (1): docs, sources and projects
	Materials (2): open-source tools

